Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38619152

RESUMEN

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Humanos , Ratones , Animales , Extractos Vegetales/química , Corteza de la Planta/química , Daño del ADN , Agua , Mutágenos , Células MCF-7
2.
Food Chem Toxicol ; 182: 114211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38007212

RESUMEN

Minoxidil is regularly prescribed for alopecia, and its therapeutic potential has expanded in recent times. However, few studies have been conducted to evaluate its toxicity, and controversial findings regarding its mutagenic activities remain unsolved. This study aimed to access cytotoxic, genotoxic, and mutagenic properties of minoxidil using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, comet assay, and micronucleus test in mouse fibroblast (L929) cells and its point mutation induction potential in the Salmonella/microsome assay. Furthermore, an in vivo toxicity assessment was conducted in Caenorhabditis elegans. Minoxidil showed cytotoxicity at 2.0 mg/mL in MTT assay. Genotoxicity was observed after 3 h treatment in L929 cells using comet assay. No mutagenic effect was observed in both the micronucleus test and the Salmonella/microsome assay. The lethal dose 50 in C. elegans was determined to be 1.75 mg/mL, and a delay in body development was detected at all concentrations. In conclusion, minoxidil induces DNA damage only in early treatment, implying that this DNA damage may be repairable. This observation corroborates the absence of mutagenic activities observed in L929 cells and Salmonella typhimurium strains. However, the toxicity of minoxidil was evident in both C. elegans and L929 cells, underscoring the need for caution in its use.


Asunto(s)
Caenorhabditis elegans , Minoxidil , Ratones , Animales , Pruebas de Mutagenicidad , Minoxidil/toxicidad , Ensayo Cometa , Daño del ADN , Pruebas de Micronúcleos , Mutágenos/toxicidad , Alopecia/inducido químicamente
3.
Arch Dermatol Res ; 311(6): 491-497, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31087156

RESUMEN

Cosmeceuticals are cosmetics formulated using compounds with medical-like benefits. Though the antiaging effect of carboxyethyl aminobutyric acid (CEGABA) has been discussed, its action mechanism in cosmeceuticals remains unclear. This study assessed the in vitro efficacy and safety of CEGABA. NHI-3T3 mouse fibroblast cell line was treated with two CEGABA concentrations (50 and 500 µmol/L) for 24 h, 48 h, and 72 h. Cytotoxicity and genotoxicity were evaluated by colorimetry (MTT) and the alkaline version of the comet assay, respectively. Flow cytometry and the scratch-wound assay were used to assess cell-cycle phase distributions and cell migration rates. Compared with the untreated control, CEGABA increased cell growth 1.6 times after 72 h, independent of dose. The compound also decreased cell replication time by 4 h. These findings seem to be related with the approximately 1.5-times increase in phase S cells numbers. Importantly, in vitro wound healing improved roughly 20% after treatment with CEGABA for 24 h and persisted after 48 h, indicating culture recovery. The time-dependent proliferation and migration of fibroblasts induced by CEGABA besides the fact that the compound is neither genotoxic nor cytotoxic makes it an ideal candidate in the development of cosmeceuticals in antiaging therapy.


Asunto(s)
Aminobutiratos/efectos adversos , Aminobutiratos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cosméticos/efectos adversos , Cosméticos/farmacología , Células 3T3 , Envejecimiento/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Ratones , Pruebas de Mutagenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...